第七百二十四章:来自学生的灵感! (第2/2页)
理论化学在这一基础上更甚。
有时候一场实验,如果你运气好,可能就能解决一个难题。
但理论化学的推进却需要从无数场的实验中去积累数据,从而进行计算和发展。
甚至很多时候就算是理论解决了,你也很难将其进行变现,它受益的是全人类,而不是变成专利给某个人带来财富。
但对于学术发展来说,如果将这些问题一一作答,带来的影响绝对比解决某一个实际难题更加的重要。
其他的不说,如果能够解决这些问题,那么包揽诺贝尔化学奖数年是一点问题都没有的。
这也是那些甄选委员们更青睐于理论以及理论带来的变化的原因,因为理论领域的工作,改变的是人类的发展,是文明的进程。
但即便是有诺奖在后面支持,化学领域中的各种理论难题依旧众多。
即便是徐川想要为化学的微观实质反应过程建立理论和模型,也不可能解开所有的难题。
或许有人会问,如果你解决不了这些难题,那你怎么为它建立一个理论模型?
这,就涉及到理论工作的核心了。
也是这次理论研究中的最大难题,耗费在这上面的时间已经超过一个月了。
“教授,您有空吗?”
办公室中,正当徐川思索着该如何从数学上解决电化学微观实质反应过程的难题时,一道清脆悦耳的声音在耳边响起。
徐川扭头看去,正是他前两个月才新收的小学生刘嘉楹,这会正站在门口看着他。
笑了笑,他开口问道:“怎么了?”
刘嘉楹连忙走了过来,将手中的问题了递了过来,开口问道:“这个问题我有些不懂,您能给我讲讲吗?”
“我看看。”徐川伸手接过笔记本看了起来。
“流形 Cn(R),它是由 R3中所有 n个互不相同的点组成的构形空间,每个向量差一个相位等价.,每个 n都存在连续映射 fn : Cn(R)→ U(n)/T,它与Sn的作用是否相容.”
笔记本上的问题映入眼帘,徐川笑了笑,开口道:“流形方面的问题啊,这问题倒是挺有意思的。”
带着些自言自语的说了一句,他站起身,拿着笔记本走到了办公室的另一侧,从角落中拖出来了一面黑板。
“过来点,我给你讲解一下。”
闻言,刘嘉楹连忙凑了过来,徐川看了眼手中的笔记本,思索了一下后开口道:“从表面上来,这是个流形领域的问题。”
“不过如果你深入思考的话,你会发现它其实涉及到的除了流形还有置换群领域的概念。”
“首先,构造映射一个关于变元 t的 n 1次多项式 pi =Yj=i(t tij )”
“这里你需要了解置换群〈G,·〉其诱导的等价类数目等于置换群中每个置换下不变元的平均数”
黑板前,徐川并没有直接给出这个问题的答案,而是根据自己的理解一点一点的将引导思路拆分出来进行讲述。
站在一旁,刘嘉楹脸上带着一些若有所思的神色,似懂非懂点了点头。
这个问题是有些超出她的学习范围的,群构和置换方面的知识她还没深入学习,不过在徐川的讲解下,她对于这类问题已经有了一定的思路和想法。
“解决这个问题需要你对群和数论有着一定的了解,回去再多看看书,你应该就能解开它了。”他将手中的粉笔丢进了篓盒中,笑着看向站在一旁的刘嘉楹,开口说道。
“谢谢教授。”
“不客气,去吧。”
拍了拍手,徐川笑眯眯看了一眼抱着笔记本走出去的刘嘉楹,回到了自己的办公桌前。
这个新收的小学生倒也不愧于IMO满分的选手,在数学上的天赋还是蛮不错的。
至于和她姐姐相比如何,那就要看她自己的努力和未来的运气了。
不过从现在来看,她还是相当勤奋的。
坐回了办公桌前,徐川重新拾起了手中的稿件,刚想要重新研究一下量子化学方面的理论,脑海中一道灵光突然闪过。
置换群、数论、流形.
刚刚给刘嘉楹讲解的数学知识点忽然重新引入了他的眼帘,让他情不自禁的愣了一下,眼神中带上了一些沉思。
“如果说通过在流形中利用n点来构建 Cn(R)类型的空间,利用n个元素的置换群 Sn自由作用在 Cn(R)上能够解决在连续映射问题”
“那么这条思路能否应用到量子化学上?”
“要知道,量子力学的spin统计定理本身就和这个有关系.”
徐川喃喃自语着,失焦的眼神盯着前面的黑板,一条条可行的理论犹如拼搭的积木一般快速的被他组装成一具楼梯。
也不知道过去了多久,散漫的眼神重新明亮了起来
盯着不远处的黑板,徐川的脸上勾起了一抹笑容.或许,他知道该怎么解决为化学的微观实质反应过程建立理论和模型的数学理论了!
PS:晚点还有一章,不过会比较晚,月底了,求个月票。
(本章完)